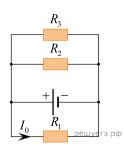

Демонстрационный вариант теста по физике 2016 год.

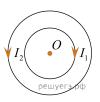
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Чтобы измерить силу, необходимо воспользоваться прибором, который называется:
 - 1) вольтметр 2) барометр 3) штангенциркуль 4) часы 5) динамометр
- **2.** Если кинематические законы прямолинейного движения тел вдоль оси Ox имеют вид: $x_1(t) = A + Bt$, где A = 10 м, B = 1,2 м/с, и $x_2(t) = C + Dt$, где C = 45 м, D = -2,3 м/с, то тела встретятся в момент времени t, равный:
 - 1) 20 c 2) 18 c 3) 16 c 4) 13 c 5) 10 c
- **3.** Поезд, двигаясь равноускоренно по прямолинейному участку железной дороги, за промежуток времени $\Delta t = 20$ с прошёл путь s = 340 м. Если в конце пути модуль скорости поезда v = 19 м/с, то модуль скорости v_0 в начале пути был равен:
 - 1) 10 m/c 2) 12 m/c 3) 13 m/c 4) 15 m/c 5) 16 m/c
- **4.** На материальную точку массой m=0.50 кг действуют две силы, модули которых $F_1=4.0$ Н и $F_2=3.0$ Н, направленные под углом $\alpha=90^\circ$ друг к другу. Модуль ускорения a этой точки равен:
 - 1) 2.0 m/c^2 2) 5.0 m/c^2 3) 8.5 m/c^2 4) 10 m/c^2 5) 14 m/c^2
- **5.** Мяч свободно падает с высоты H=9 м без начальной скорости. Если нулевой уровень потенциальной энергии выбран на поверхности Земли, то отношение потенциальной энергии Π мяча к его кинетической энергии K на высоте h=4 м равно:
 - 1) $\frac{2}{3}$ 2) $\frac{3}{5}$ 3) $\frac{4}{5}$ 4) $\frac{4}{7}$ 5) $\frac{5}{4}$


6. На рисунке представлены графики (1 и 2) зависимости гидростатического давления p от глубины h для двух различных жидкостей. Если плотность первой жидкости $\rho_1=0,80$ г/см 3 , то плотность второй жидкости ρ_2 равна:

- 1) 0.80 r/cm^3 2) 0.90 r/cm^3 3) 1.4 r/cm^3 4) 1.6 r/cm^3 5) 1.8 r/cm^3
- 7. Идеальный газ массой m=6.0 кг находится в баллоне вместимостью V=5.0 м 3 . Если средняя квадратичная скорость молекул газа $\langle \upsilon_{\rm KB} \rangle = 700$ м/с, то его давление p на стенки баллона равно:
 - 1) 0,2 M Π a 2) 0,4 M Π a 3) 0,6 M Π a 4) 0,8 M Π a 5) 1,0 M Π a
- **8.** В некотором процессе зависимость давления p идеального газа от его объема V имеет вид $p=\frac{A}{V},$ где A коэффициент пропорциональности. Если количество вещества постоянно, то процесс является:
 - 1) адиабатным 2) изотермическим 3) изохорным 4) изобарным 5) произвольным
- **9.** В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q=18,0 кДж и его давление увеличилось в k=3,00 раза, то начальная температура T_1 газа была равна:
 - 1) 280 K 2) 296 K 3) 339 K 4) 361 K 5) 394 K
 - 10. Единицей индуктивности в СИ является:
 - 1) 1 Γ_H 2) 1 A 3) 1 Φ 4) 1 B 5) 1 O_M
- **11.** Два одинаковых маленьких проводящих шарика, заряды которых $q_1=32$ нКл и $q_2=18$ нКл, находятся в воздухе $(\varepsilon=1)$. Шарики привели в соприкосновение, а затем развели на расстояние r=15 см. Модуль силы F электростатического взаимодействия между шариками равен:
 - 1) $1,5 \cdot 10^{-4} \,\mathrm{H}$ 2) $2,0 \cdot 10^{-4} \,\mathrm{H}$ 3) $2,5 \cdot 10^{-4} \,\mathrm{H}$ 4) $3,0 \cdot 10^{-4} \,\mathrm{H}$ 5) $3,5 \cdot 10^{-4} \,\mathrm{H}$


1/6

12. Электрическая цепь, схема которой приведена на рисунке, состоит из источника постоянного тока и трёх резисторов, сопротивления которых $R_1=R$ и $R_2=R_3=2R$ (см. рис.). Если сила тока, протекающего через резистор с сопротивлением R_1 , равна I_0 , то сила тока I, протекающего через источник тока, равна:

1)
$$3I_0$$
 2) $2I_0$ 3) $\frac{3}{2}I_0$ 4) I_0 5) $\frac{1}{2}I_0$

13. Два тонких проводящих контура, силы тока в которых I_1 и I_2 , расположены в одной плоскости (см. рис.). Если в точке O (в центре обоих контуров) модули индукции магнитных полей, создаваемых каждым из токов, $B_1=6,0$ мТл и $B_2=8,0$ мТл, то модуль индукции B результирующего магнитного поля в точке O равен:

14. Энергия магнитного поля катушки индуктивности, сила тока в которой $I_1=2$ A, равна $W_1=3$ Дж. Если при равномерном уменьшении силы тока в катушке возникает ЭДС самоиндук-

ции $\varepsilon_{si}=3$ В, то модуль скорости изменения силы тока $\left|\frac{\Delta I}{\Delta t}\right|$ в ней равен:

15. Расстояние между соседними гребнями морских волн l=8,0 м. На поверхности воды качается лодка, поднимаясь вверх и опускаясь вниз. Если модуль скорости распространения волн u=4,0 м/с, то частота ν колебаний лодки равна:

16. Если фототок прекращается при задерживающем напряжении $U_3 = 2,25~\mathrm{B}$, то модуль максимальной скорости v_{max} фотоэлектронов равен:

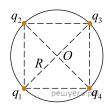
1)
$$9.7 \cdot 10^5$$
 m/c 2) $8.9 \cdot 10^5$ m/c 3) $7.4 \cdot 10^5$ m/c 4) $6.2 \cdot 10^5$ m/c 5) $4.5 \cdot 10^5$ m/c

17. Луч света падает под углом $\alpha = 60^{\circ}$ на поверхность стекла, находящегося в вакууме. Если угол преломления луча $\gamma = 30^{\circ}$, то модуль скорости υ света в стекле равен:


1)
$$1,1 \cdot 10^8$$
 m/c 2) $1,7 \cdot 10^8$ m/c 3) $2,9 \cdot 10^8$ m/c 4) $3,7 \cdot 10^8$ m/c 5) $5,1 \cdot 10^8$ m/c

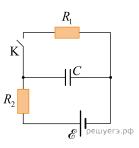
18. Если ядро радиоактивного изотопа ${}^{18}_{9}{
m F}$ испускает протон, то массовое число A нового элемента равно:

- **19.** Тело движется равноускоренно в положительном направлении оси Ox. В момент начала отсчёта времени $t_0 = 0$ с проекция скорости тела $v_{0x} = 4.0$ м/с. Если проекция ускорения тела на ось $a_x = 4.0$ м/с², то проекция перемещения Δr_x тела за шестую секунду равна ... м.
- **20.** Деревянный ($\rho_{\rm д}=0.8~{\rm г/cm}^3$) шар лежит на дне сосуда, наполовину погрузившись в воду ($\rho_{\rm B}=1~{\rm г/cm}^3$). Если модуль силы взаимодействия шара со дном сосуда $F=9~{\rm H}$, то объём V шара равен ... дм³.
- **21.** Тело массой m=300 г, подвешенное на легком резиновом шнуре, равномерно вращается по окружности в горизонтальной плоскости. Шнур во время движения груза образует угол $\alpha=60^\circ$ с вертикалью. Если потенциальная энергия упругой деформации шнура $E_\Pi=90,0\,$ мДж, то жесткость k шнура равна ... Н/м.
- **22.** Два тела массами $m_1 = 2,00$ кг и $m_2 = 1,50$ кг, модули скоростей которых одинаковые ($\upsilon_1 = \upsilon_2$), движутся по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой $\upsilon = 10$ м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **23.** Вертикальный цилиндрический сосуд с аргоном (M=40 г/моль), закрытый легкоподвижным поршнем массой $m_1=12$ кг, находится в воздухе, давление которого $p_0=100$ кПа. Масса аргона $m_2=16$ г, площадь поперечного сечения поршня S=60 см 2 . Если при охлаждении аргона занимаемый им объём уменьшился на $\Delta V=830$ см 3 , то температура газа уменьшилась на ΔT , равное ... К. (Ответ округлите до целого числа.)
- **24.** Гружёные сани массой M=264 кг равномерно движутся по горизонтальной поверхности, покрытой снегом, температура которого t=0,0 °C. Коэффициент трения между полозьями саней и поверхностью снега $\mu=0,035$. Если всё количество теплоты, выделившееся при трении полозьев о снег, идёт на плавление снега ($\lambda=330$ кДж/кг), то на пути s=400 м под полозьями саней растает снег, масса m которого равна ... г.


Вариант № 1 Вариант № 1

25. Два моля идеального одноатомного газа перевели из состояния 1 в состояние 3 (см. рис.), сообщив ему количество теплоты Q = 5.30 кДж. Если при изобарном расширении на участке 1 \rightarrow 2 температура газа изменилась на $\Delta T = 120 \text{ K}$, то на участке 2 \rightarrow 3 при изотермическом расширении газ совершил работу A, равную ... Дж.

26. Источник радиоактивного излучения содержит $m_0 = 1,2$ г изотопа радия $^{226}_{88}\mathrm{Ra},$ период полураспада которого $T_{1/2}=1,6$ тыс. лет. Через промежуток времени $\Delta t=6,4$ тыс. лет масса mнераспавшегося изотопа радия составит ... мг.


27. На окружности радиуса R = 3.0 см в вершинах квадрата расположены электрические точечные заряды $q_1 = 5.0$ нКл, $q_2 = q_3 = 2.0$ нКл, $q_3 = 2.0$ нКл, $q_4 = 2.0$ нКл, $q_5 = 2.0$ $q_4 = -2,0$ нКл (см. рис.). Модуль напряжённости E электростатического поля, образованного всеми зарядами в центре окружности (точка О), равен ... кВ/м.

28. Нагревательный элемент сопротивлением R = 8.0 Ом подключён к источнику постоянного тока, коэффициент полезного действия которого $\eta = 80 \%$ при данной нагрузке. При этом мощность нагревательного элемента составляет P = 32 Вт. ЭДС ϵ источника равна ... В.

29. Протон, начальная скорость которого $v_0 = 0$ м/с, ускоряется разностью потенциалов φ_1 $-\varphi_2 = 0.45 \text{ кB}$ и влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции. Если модуль вектора магнитной индукции магнитного поля B = 0.30 Тл, то радиус Rокружности, по которой протон будет двигаться в магнитном поле, равен ... мм. (Ответ округлите до целого числа мм.)

30. Электрическая цепь состоит из источника постоянного тока с ЭДС ε = 300 В, двух резисторов сопротивлениями $R_1 = 100 \text{ Ом}, R_2 = 200 \text{ Ом и конденсатора ёмкостью } C = 10$ мкФ (см. рис.). В начальный момент времени ключ К был замкнут и в цепи протекал постоянный ток. Если внутренним сопротивлением источника тока пренебречь, то после размыкания ключа К на резисторе R_2 выделится количество теплоты Q, равное ... мДж

6/6